2 – 案例 癌症分类预测

1 逻辑回归的API

sklearn提供了逻辑回归的API

sklearn.linear_model.LogisticRegression(solver='liblinear', penalty=‘l2’, C = 1.0)

solver可选参数:{‘liblinear’, ‘sag’, ‘saga’,’newton-cg’, ‘lbfgs’}

  • 对于小数据集来说,“liblinear”是个不错的选择,而“sag”和’saga’对于大型数据集会更快。
  • 对于多分类问题,只有’newton-cg’, ‘sag’, ‘saga’和’lbfgs’可以处理多项损失

penalty:正则化的种类

C:正则化力度

LogisticRegression方法相当于 SGDClassifier(loss=”log”, penalty=” “),SGDClassifier实现了一个普通的随机梯度下降学习。而使用LogisticRegression(实现了SAG)

2 逻辑回归案例

2.1 背景介绍

  • 数据介绍

原始数据的下载地址:https://archive.ics.uci.edu/ml/machine-learning-databases/

数据描述

(1)699条样本,共11列数据,第一列用语检索的id,后9列分别是与肿瘤

相关的医学特征,最后一列表示肿瘤类型的数值。

(2)包含16个缺失值,用”?”标出。

2.2 案例分析

1.获取数据
2.基本数据处理
2.1 缺失值处理
2.2 确定特征值,目标值
2.3 分割数据
3.特征工程(标准化)
4.机器学习(逻辑回归)
5.模型评估

2.3 代码实现

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
# 1.获取数据
names = ['Sample code number', 'Clump Thickness', 'Uniformity of Cell Size', 'Uniformity of Cell Shape','Marginal Adhesion', 'Single Epithelial Cell Size', 'Bare Nuclei', 'Bland Chromatin', 'Normal Nucleoli', 'Mitoses', 'Class']

data = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data",names=names)
data.head()
# 2.基本数据处理
# 2.1 加载数据时指定特殊缺失值
data = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data",names=names,na_values='?')
# 处理缺失值
data = data.dropna()
# 2.2 确定特征值,目标值
x = data.iloc[:, 1:10]
x.head()
y = data["Class"]
y.head()
# 2.3 分割数据
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=22)
# 3.特征工程(标准化)
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)
# 4.机器学习(逻辑回归)
estimator = LogisticRegression()
estimator.fit(x_train, y_train)
# 5.模型评估
y_predict = estimator.predict(x_test)
y_predict
estimator.score(x_test, y_test)

在很多分类场景当中我们不一定只关注预测的准确率!!!!!

比如以这个癌症举例子!!!我们并不关注预测的准确率,而是关注在所有的样本当中,癌症患者有没有被全部预测(检测)出来。


3. 小结

  1. 逻辑回归的API sklearn.linear_model.LogisticRegression
  2. 如果数据中有缺失值,一定要对其进行处理
  3. 准确率并不是衡量分类正确的唯一标准
逻辑回归

1 - 逻辑回归介绍

2023-5-19 16:25:52

逻辑回归

3 - 分类评估指标

2023-5-19 16:35:11